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Abstract
 In this paper we report on the Probability Inquiry
Environment (PIE), which facilitates the development of
probabilistic reasoning by making available collaborative
inquiry activities and student-controlled simulations. These
activities guide middle school students toward a deeper
understanding of probability, a domain that is becoming
increasingly important in the K-12 mathematics curricula of
the United States but which is notoriously difficult to learn.
A study is described in which middle school students who
participated in the PIE curriculum significantly
outperformed students who participated in the school’s
traditional probability curriculum. We posit that this
difference is due to the PIE curriculum fostering student
collaboration as the students employ their existing intuitions
as building-blocks for formal knowledge.  This provides
evidence that a productive learning environment should not
be based solely upon the logical structure of the target
domain, but should also account for both students' intuitive
conceptions of a domain, as well as aspects of social
interaction that shape students' experiences.  We then show
the importance of intuitions and social interaction by
analyzing a case study in which students articulated and
revised their initial understandings of probability as they
interacted with PIE—collaboratively making predictions,
evaluating data, and interpreting representations.

Every day, people are called upon to make decisions based
on statistical and probabilistic information.  Public opinion
polls, advertising claims, medical risks, and weather reports are
just a few of the everyday activities that draw on an
understanding of probability.  In addition, probability is
applicable to many academic disciplines outside of
mathematics, as it is routinely used in the professional
activities of biologists, geneticists, and psychologists alike.

Recently, teaching and learning probability at the middle
school level has been recognized as an important strand in the
mathematics standards at both the national (NCTM, 1989) and
state levels (California Department of Education, 1992; 1999).
These standards call for students to be able to make predictions
based on theoretical probabilities and empirical data, model
probabilistic situations by representing all the possible
outcomes for compound events and understand and appreciate
the pervasive use of probability in the real world.

Designing new and effective methods of probability
instruction, however, presents a difficult pedagogical
challenge.  It is well recognized that both lay people and
professional scientists often make mistakes when reasoning
probabilistically (Konold et al., 1993; Tversky & Kahnemann,
1982).  This paper will discuss one instructional environment
that was designed to help middle school students come to a
more normative understanding of probability theory.

An Overview of the Paper
We begin by describing our instructional approach, in

which we advocate student construction and appropriation of
concepts by making available student-controlled interactive
simulations, dynamic-representations, and contextualized
learning activities.  Next, we discuss students’ understanding of
probability theory and then go on to describe the Probability
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Inquiry Environment (PIE). PIE consists of a number of
carefully crafted activities designed to encourage students to
articulate and refine their understandings of probability while
using the tools and practices of mathematics and probability.
This is followed by a description of a study in which PIE was
implemented in two seventh grade public school classrooms.
We then present detailed qualitative data from one pair of
students as they investigate one of the computer activities, and
show how the features of PIE contributed to student
conversations and student understandings.  We conclude with
generalizations from our work, and recommendations for
others creating collaborative environments for active
knowledge construction.

Our Instructional Approach
There has been a recent movement to use technology-

mediated inquiry (i.e., using computer software tools in helping
students to make predictions about a situation, gather empirical
data to test the predictions, and then compare the initial
predictions to the data and drawing conclusions) as a method
for teaching science (White, 1993a) and mathematics
(Lampert, 1995; Richards, 1991). This movement has been
particularly strong in the area of stochastics (Shaughnessy,
1992; Konold, 1991; Lajoie, et al. 1996; Hancock, 1992;
NCTM, 1989; Newman, et al. 1987; Rosebery & Rubin, 1989).
For guidance in creating productive activities, we build from
several areas of research:

(i) existing student understandings can play a productive
role in the development of expertise, and instead of
viewing non-normative understandings as deficiencies
that must be replaced, we should work to build on what
is productive in these understandings (see Smith, et al.,
1993; see also diSessa, 1988; Lampert, 1986; Minstrell,
1989; White, 1993a, 1993b),

(ii) students construct meaning and understanding
while participating in a social context (Brown &
Campione, 1996; Collins et al. 1989; Hall &
Rubin, 1998), and student learning is facilitated
when students make their existing ideas explicit in
order to evaluate these ideas with respect to
findings in the domain and the ideas of others
(Konold, 1991; Linn, 1995).

 (iii) Educators should design activities that provide
intermediate tools and models that maintain fidelity
with the relevant aspects of expert analysis while
students participate in authentic tasks (Gordin et al.
1994; White, 1993a, 1993b),

(iv) students should engage in such activities before
the concepts, terms, and definitions of the domain
are introduced to the class.  In this way students
have the opportunity to actively engage in the
domain, to appreciate the complexity of the
domain, and to investigate their own understanding
of the domain.  Then, in class discussions, the
concepts, terms, and definitions are not “out of the
blue”, but build on students’ experiences and
enrich their understanding of a situation they
consider both problematic and relevant (Enyedy,
Vahey & Gifford, 1998).

In designing an instructional environment based on this
stance, we chose to create a progression of activity sets, where
each activity set is interesting and highlights an important
aspect of the domain to be studied, and each activity set
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extends the findings from the previous activities (cf. White
1993a, 1993b).  In this environment, students are engaged in
authentic activities from the beginning, they can create
understandings that are consistent with some aspects of their
existing reasoning, and, as they are systematically exposed to
aspects of the domain, their understandings can be revised, and
need not be completely overhauled.  This allows students to
expand the understandings that are most appropriate for
specific situation, and allows students to recognize which
understandings are inappropriate for specific situations.  We
now describe the overall structure of the Probability Inquiry
Environment.

The Structure of PIE
Each of the activity sets in the PIE three week curriculum

have a computer-based and hands-on collaborative inquiry
activity, in which the students work in pairs, followed by a
whole class discussion designed to help students understand
and formalize the result of the activity.  Throughout PIE
students were asked to determine if a game of chance was
“fair”.  Evaluating the fairness of games is an activity middle
school students consider authentic and legitimate, and students
spontaneously invoke probabilistic reasoning when asked if
certain games of chance are fair (Vahey, 1996).  This finding is
consistent with findings from the literature on moral
development (Thorkildesen, 1995), as well as the stochastics
education literature.  For instance, students have been shown to
spontaneously bring up ideas of fairness when asked to survey
a population (Lajoie et al., 1995), or when asked to collect data
that will be used to measure the relative merits of different
stereo systems (Hancock et al., 1992).  Investigating fairness is
a context consistent with the notion of building from students’
understandings while having them engage in tasks that are

meaningful to them.
During the computer-based activities students are engaged

in an explicit process of inquiry.  The inquiry cycle used in PIE
consists of six steps: Rules, Try, Predict, Play, Conclude, and
Principles.  In Rules, the software shows the students an
animated introduction to the current game.  In Try, the students
get a chance to experiment with the representations and
controls of the simulation.  This was done to allow the students
some amount of familiarity with the environment before asking
them to make predictions.

In Predict, we created questions that highlight aspects of
the game that are particularly salient to a standard
understanding of probability.  These questions were designed
to have students articulate cohesive explanations in which they
have some commitment, consider alternate perspectives, and be
sensitized to future events that may support the prediction or
call that prediction into question.  PIE also provides interactive
representations, such as draggable bar charts, that provide
students with a physical object that can be discussed, leading to
more productive conversations than are otherwise possible
(Enyedy et al., 1997).

In Play, the software simulates the playing of the game,
providing several resources and capabilities to facilitate
productive collaboration. Some of the most important of these
resources are: an animated probability tree that highlights the
current state of the point; a representation that shows how each
team scores; where appropriate, a bar chart that can toggle
between showing the distribution across each of the outcomes
or the points for each team; and a table which shows this total
numerically.  Each of these is a shared representational
resource that can be used by the students to jointly construct an
explanation of the current situation, and each of these provides
the students with intermediate tools that bring the analysis of
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experts into the realm of the students (Enyedy et al., 1997).
Additionally, to help guide the students toward the salient
aspects of the simulation, PIE provides Observation Questions
that stop the simulation at pre-determined events and ask the
students to reflect on their current understandings and the
current status of the simulation

In Conclude, the students compare their predictions to the
data from the simulation. Students are again asked their ideas
from multiple viewpoints, but now the environment also
provides data from their simulations as another resource for
constructing understanding. Finally, in Principles, the
environment scaffolds the students to jointly articulate what
they can generalize from the activity.  In Principles, students
are no longer asked about the fairness of the games that were
just played, but instead are asked to form generalizations that
transcend the particular game.

These activities are then followed by real-world activities
in which students flip coins and roll dice as they investigate
probability without using the computer simulations.  In the full-
class discussions, each pair then relates their findings from
both the computer-based and real-world activities, and
discusses how to best determine if the game is fair.  In these
discussions students raise issues such as the relative utility of
the different representations, methods they used for deciding if
the game is fair, and how to formalize their knowledge in the
language of mathematics (Enyedy et al., 1998).

This process is designed to scaffold students in the
construction of a normative view of the domain of probability.
Before discussing the specific PIE activities, let us move to a
discussion of the literature on students’ probabilistic reasoning:
how can we use the research on people’s probabilistic
reasoning in conjunction with our instructional approach to
provide a solid foundation for the specific activities in the

Probability Inquiry Environment?

The Literature on Students’ Understanding of Probability
Due to the recent interest in teaching probability in middle

school and high school, there have been a number of reviews of
the literature on students’ probabilistic reasoning, and we refer
the reader to these articles for a detailed review of the current
state of the literature (Konold, 1991; Lajoie, et al., 1995; Metz,
1998; Shaughnessy, 1992). Interestingly, each of these point to
the need for a more detailed understanding of young students’
probabilistic reasoning.  In this section we provide a
telegraphic summary of some of the more influential findings
on students’ understandings of probability, and provide a
starting point for a more detailed understanding of young
students’ probabilistic reasoning.

Contradictions abound in the research on probabilistic
reasoning, with some research showing that people are
inherently poor at reasoning probabilistically, and other
research showing that people are inherently good at reasoning
probabilistically.  For example, in the literature on adults’
probabilistic reasoning, Kahneman and Tversky’s seminal
work asserts that, not only are people poor at probabilistic
reasoning, but this poor reasoning is innate and highly resistant
to change. They state that much of our probabilistic reasoning
can be described by cognitive illusions (Kahneman & Tversky,
1996; Tversky  & Kahneman, 1982), described as heuristics
and biases. Heuristics are shortcuts that people employ when
making decisions under uncertainty, and although these
heuristics are often productive, employing these heuristics can
lead to systematic errors, which they call biases.

Directly rebutting this conclusion, others assert that people
are inherently good at probabilistic reasoning, and people do
not suffer from cognitive illusions.  These researchers show
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that people are sensitive to minor changes in the wordings of
questions.  By varying how the situation is presented, and by
performing a different analysis on the responses, they show
that people can reason about complex issues in ways that are
consistent with probability theory, contradicting the claim that
people are simply falling prey to cognitive illusions (Cosmides
& Tooby, 1996; Gigerenzer, 1996).  And, others present a more
moderate view, stating that people may at times suffer from
cognitive illusions, but this is only one of a number of
reasoning strategies that people may use (Konold et al., 1993).

Contradictions also abound in the literature on children's
understanding of probability.  For example, Piaget & Inhelder
(1975) state that children can only understand probability once
they reach the age of formal operations, because it is only at
the age of formal operations that children can differentiate the
necessary from the possible, and so can reason without
imposing causality on all phenomena.  Then, once students
reach the stage of formal operations, they spontaneously begin
to understand important aspects of probability theory, such as
the outcome space and the indeterminacy of events.  This
contrasts with the view of Fischbein (1975; Fischbein et al.,
1991), who disagrees on both points.  Fischbein states that
children can understand probability theory before reaching the
age of formal operations.  Further, once children reach the age
of formal operations, they do not suddenly appreciate the
constructs of probability theory.  Instead, students construct
understandings that are sometimes consistent with probability
theory and sometimes inconsistent with probability theory, and
it is the role of instruction to guide students as they construct
their understandings.

Given this chaotic state of the literature, how can we hope
to make sense of students’ probabilistic reasoning in a way that
can aid us in the creation of instructional environments?  In the

next section we will discuss an approach where people are not
judged at being “good” or “poor” at probabilistic reasoning.
Instead, we attempt to understand how student reasoning is
consistent with and inconsistent with normative probabilistic
reasoning so that we can create inquiry activities that build
upon students’ prior understandings.

Recent Models of Probabilistic Reasoning
We are developing a detailed model of students’

probabilistic reasoning that considers their performance along
several distinct, although related, dimensions (cf. Horvath &
Lehrer 1998; Vahey, et al., 1997).  We then move on to
compare student reasoning to normative reasoning in the
domain of probability, finding areas in which students reason
in a manner consistent with probability theory, and finding
where their reasoning differs from probability theory.  This
research acts as a guide in creating instructional activities that
help students to build upon their existing understandings as
they come to a more normative understanding of probability
theory.

The dimensions in the model dynamically emerged from
verbal analysis of students engaging with a prototype version
of the Probability Inquiry Environment (Vahey et al., 1997).
The different ideas raised by students in this pilot study
corresponded to four aspects of probability theory:
randomness, the outcome space, the probability distribution,
and the validity of data.  By randomness we mean the non-
determinability of an event, and what predictions one can make
of this non-determinable mechanism.  By outcome space we
mean the set of all possible outcomes.  By probability
distribution we mean the probabilities assigned to the different
outcomes in the outcome space. By the validity of data we
mean how data can be used in reasoning, including when and
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how data is considered to be useful. Although each of these
aspects was just introduced as being independent from the
others, these aspects are in fact related, both in formal
probability theory, and sometimes in students’ reasoning.
When looked at in this light, we see that much of student
reasoning can be used as building blocks toward normative
probabilistic reasoning.

When discussing randomness, for example, almost all
students understood that variation is to be expected from trial
to trial. However, some students also believe randomness
means that nothing at all can be predicted about future events,
even to the point of excluding data (as will be discussed vis-a-
vis data validity).  It is important to note, though, that this
expected lack of predictability could be viewed as a normative
understanding of randomness that has been over-extended.
That is, it is completely reasonable to say that one cannot guess
the next outcome of a random process, and so students are in
many ways “correct” when they apply this idea to short-run
data.  It is only when extending this idea to long-run data that
this reasoning becomes non-normative.

This research has also shown that students invoke ideas of
outcome space and probability distribution when reasoning
about probabilistic situations, but it is in using the outcome
space and the probability distribution that students deviate most
from normative probabilistic reasoning.  Although students
often do apply a notion of “the things that can happen”,
students have great difficulty in fully enumerating an outcome
space, in differentiating between different outcomes in the
outcome space, and in seeing the relevance of the outcome
space in certain situations.  Students do, however, often assign
a probability distribution over different sets of outcomes
(although such a probability distribution typically does not
conform to the laws of formal probability theory).  By building

on students’ productive ideas we can help students come to a
normative view of the outcome space and the probability
distribution.

Finally, students have varying ideas about the validity of
data.  Although some students fell prey to the well-documented
“myth of small numbers” and believed results that are based on
a small sample, others did not believe the data when the data
was in conflict with their expectations, even after a large
number of trials. This suggests that there is an interaction
between people’s expectations and the validity that they are
willing to attribute to data.  This interaction is well known in
the science learning community, where it has been shown that
there are many possible ways for people to react to data that is
conflict with their understandings, and indeed, the acceptance
of such data is an uncommon occurrence (Chinn & Brewer,
1993; Gunstone, 1991; Strike & Posner, 1992).  This
interaction between expectations, results, and explanations can
be used as a basis for activities that require the use of data and
simulations in testing hypotheses about probabilistic
phenomena.

The PIE Activities
We used this framework to determine the nature and order

of the specific inquiry activities.  We noted that students had
many ideas about the validity of data and the importance (or
lack thereof) of a large sample. Because students were going to
be interacting with data throughout the curriculum, we
determined that students should be introduced early in the
curriculum to the law of large numbers.  Additionally, students
have great difficulty in enumerating the outcome space.
Because the outcome space is one of the most important
constructs in probability theory, we determined that this should
be a main goal of instruction.  In keeping with our theoretical
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framework, each activity is designed to highlight one of these
aspects of probability in such a way that students can use their
existing understandings to make sense of the activity, and each
activity is designed to build from the ideas of previous
activities.  We will provide short descriptions of all of the
activities, and only the third PIE activity, the Three Coin
Game, will be described in detail.  This will give the flavor of
all the activities, and this description will serve as background
for the in-depth case study to be presented later.

Activity Set 1: The Horse and Bunny Game
In this set of activities students become familiar with a

qualitative form of the Law of Large Numbers: although
probabilistic phenomena appear irregular and unpredictable in
the short term, such phenomena have long term regularities.
This was done in an activity set in which students predict the
outcome of both a small number of flips of a coin (5) as well as
a large number of flips (100).

In order to create a gaming situation that interests the
students, the computer activity takes the form of a race: coins
are flipped, and if they come up heads, they go to the left side
of a balance-scale, and if they are tails, they go to the right side
(see Figure 1).  After each flip a horse moves if the scale is
balanced (defined as between 40% and 60% heads), and a
bunny moves if the scale is unbalanced.  To help students see
how the position of the scale relates to team scoring, we
created a set of five “scoring zones”, where each zone is
labeled with either a bunny or a horse. To highlight the
difference between short term irregularities and long term
regularities, the students are asked to predict who would be
ahead after five flips, and who would be ahead after 100 flips.
As the students run the simulation, the bunny wins more games
to 5 (that is, the scale is usually unbalanced), whereas the horse

Figure 1: The Horse and Bunny Game (stopped at an Observation Question)

almost always wins the games up to 100 (that is, the scale is
usually balanced).  Students then decide, in pairs, on the
principle that best describes the findings from this activity (for
example, “when you flip a coin a few times you cannot tell
what is going to happen”).

The students then participate in a hands-on activity called
“50-50 Flip Off”. In this activity pairs of students flip a coin
five times, each time recording if the flip was heads or tails.
Then for this series of five flips, the students mark if it was
“About half” heads and tails (defined by the class as 3-2).  The
students do this 10 times each, so each pair generates fifty coin
flips.  The students then calculate what percentage of those
fifty coins were heads and what percentage were tails.  This
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array of data is then reported to the entire class, with the
teacher leading a discussion that compares how many of the
five flip series were “about half”, to what percentage of the
fifty flips were heads and tails.  From this the students discover
that a higher percentage of the fifty flips than the five flips
were “close” to fifty percent.

The class then engages in a full-class discussion where they
talk about the different groups’ results, and then decide on the
principle that best describes the outcome of these activities.  By
highlighting the relative “unevenness” of the coins after five
flips, as compared to the relative “evenness” of the coins near
100 flips, we help the students see the short term irregularity of
a random process, as well as the long term regularity of a
random process.

Activity Set 2: The Two Penny Game
The students are then introduced to the outcome space in an

activity set that consists of different on-line and real-world
activities.  In the on-line PIE activity, the Two-Penny game,
two teams are competing for points. The Twins score a point
whenever both coins come up the same (heads-heads or tails-
tails), and the Jumbles score a point whenever both coins come
up differently (heads-tails or tails-heads).  A simple “counting
strategy” is one way to determine that this game is fair, as each
team scores on two out of the four possible outcomes and all
outcomes are equally likely.  A probability tree that enumerates
all the possible outcomes and visually presents the scoring
combinations for each team is always on the screen, as is a
dynamic bar chart that shows scoring either by each
combination of coins, or by each team (see figure 2).

This game is designed to help students see that the number
of outcomes is the determining factor in fairness. This is not
necessarily obvious, as many people even adults, believe that

the Jumbles will win more, because the “mixed” outcomes of
HT or TH seem more “random” than HH or TT (cf. Tversky &
Kahneman, 1982)).

Figure 2: The Two Penny Game

The corresponding real-world activity is similar, but the
scoring is different: in this game there are three teams, the
Skulls (score when the coins are both heads), the Crossbones
(score when the coins are both tails), and the Jumbles (score
when one coins is heads and the other is tails).  Together the
on-line and real-word activities help students bring up a wide
range of intuitions.  For instance, Jumbles do come up more
than either head-head or tail-tail in the real-world game, but
Jumbles come up the same number of times as head-head and
tail-tail (combined) in the on-line game.  These activities lead
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to a class discussion that evaluates the role of the outcome
space in deciding if the games are fair.

Activity Set 3: The Three Coin Game (a detailed description)
The Three Coin Game is described in detail, as this

description will serve as background for the case study in a
later section.  Three coins are flipped: Team A scores a point
on five of eight possible outcomes, and Team B scores on three
of the possible outcomes.   Because each outcome is equally
likely, this game is unfair in favor of Team A.  Each game is
played to 200 points. Although this game is based upon the
same principles as the two-penny game, this similarity is not
necessarily obvious to students.

In the prediction questions students are first asked if this
game is fair (Figure 3a).  They are next asked to predict how
often each outcome will occur, and show this by dragging the
eight bars of a bar chart to their expected heights.

Finally, the students are asked to predict the points for each
team, again by dragging a set of bar charts, and this time the
bars of the chart are linked so that the total for each team
always adds up to 200 (Figure 3b). It is important to note that,
although a statistician might state that each of these questions
are simply different wordings of the same basic question, that
is not obvious to most students.  It is by asking this series of
questions that we help students see the relationships between
their ideas, and construct a more coherent understanding.

In each of these prediction questions the students are asked
to justify their answers, and as the students choose answers and
manipulate bar charts, PIE generates sentence-starters for the
students’ justification.  For example, in Figure 3b, PIE
generated the text “We think Team B will score more points
because”.

Figure 3a: Three Coin Game Prediction 1

Figure 3b: Three Coin Game Prediction 3
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Students then proceed to Play (Figure 4), where they run
simulations of the three coin game.  The students start the game
by pressing the Start/Stop button, and control the speed via the
speed control.  At the four “normal” speeds, the coins in the
upper left spin until each lands on heads or tails.  As the coins
land on heads or tails, a token animates down the probability
tree, highlighting the current path, and dimming the other
paths.  Once all three coins are decided, the token animates
down into the bar chart, and the chart updates to reflect this
point. Additionally, the scoreboard at the lower right
automatically updates.   At any time the students can choose to
view the bar chart by combinations or by teams, and at any
time the students can change the speed of the game, or stop and
start the game.  At 20 points the game stops and “Karen” (the
on-screen character) announces who is ahead, team-specific
music and animation play, and a table shows the number of
games each team has won.  The students then start the game
again, often choosing the fastest speed (“superfast”), where PIE
can play 200 points in under a minute. Again, at 200 points, the
game stops, Karen announces who has won, team-specific
music and animation play, and a table shows the number of
games each team has won. Every second game Karen
introduces an “Observation Question”, asking the students if
they think that the game is fair or unfair now, and providing
students with a text entry space to write their current ideas.
After the students play four games up to 200, Karen suggests
that they go to Conclude, although they are free to go to
Conclude at any time, and are free to stay in Play as long as
they like.

In Conclude students revisit their predictions, but now are
given data from the last three games as a resource for
evaluation.  By having students compare their predictions to

results from several games they are given the opportunity to
recognize patterns in the data.  In Principles the students are
then given the opportunity to create their own fair game, and
are asked to provide a method for estimating how often an
event will occur.

The corresponding real-world activity has the students
investigate the outcomes of the role of two dice.  Although
these activities have very different surface features, the same
principle can be applied to both of these games (for instance,
one pair wrote “We can estimate how often each team will
score by how many chances they have to get points.”).  After a
class discussion in which the class decides on the most
appropriate principle for this activity, the teacher helps the
students see how their principle leads directly to the formula
for computing a subset of outcomes from a set of equally
probable outcomes: P = # favorable outcomes/total outcomes.

Activity Set 4: The Two Spinner Game
The fourth activity introduces students to a continuous

outcome space through the use of non-equal area spinners
(Figure 5).  This activity allows student to see the limitations of
counting strategies and the formula P = # favorable
outcomes/total outcomes, as Team A scores on only one out of
four outcomes (and Team B scores on three out of four), yet
Team A scores more points than Team B.  However, by
creating an area model of probability, in which one looks at
each spinner as having four equally probable outcomes, of
which three are orange and one is yellow, we can link this
continuous outcome space to discrete outcomes (Figure 6).
These activities show that situations with very different surface
features can all be described by a formal use of the outcome
space, which is an important part of the PIE curriculum.
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Figure 4: The Three Coin Game
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Figure 5: The Two Spinner Game
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Figure 6: The outcome space for PIE’s Spinners

Activity
Set

Game/
Activity

Rules Fair Target
Understandings

1: on-line Horse
and
Bunny

Bunny moves when scales
unbalanced, Horse moves
when scales balanced

-na- aw of Large Numbers

1: off-line 50-50
Flip Off

Determine how often coin
flips are “about half” heads
and tails

-na- aw of Large Numbers

2: on-line Two
Penny
Game

Twins score on H-H and T-
T
Jumbles score on H-T and
T-H

Yes mportance of outcome
pace

2: off-line Two
Penny
Game

Jumbles score on H-T and
T-H
Skulls score on H-H
Crossbones score on T-T

No mportance of outcome
pace

3: on-line Three
Coin
Game

Team A scores on 8
outcomes
Team B scores on 3
outcomes

No mportance of outcome
pace

4: off-line Two
Dice
Game

Sum 2 dice, outcome moves
one place

No mportance of outcome
pace

4: on-line Two
Spinner
Game

Team A scores on 1
outcome
Team B scores on 3
outcomes

No mportance of
robability distribution
nd outcome space

Table 1: Summary of activities 

The Study
The PIE curriculum was implemented for three weeks in

two seventh grade classes (n = 45) in an urban middle school
that serves a diverse group of students. During this same period
a comparison group consisted of two classes taught by the
same teacher as the PIE group (n = 54).  The comparison
group’s unit covered the same topics as the PIE group during
the same time in the academic year, but was taught in the
traditional manner for this school.  The traditional method in
this case did not use a computer but instead had the students
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play and analyze a number of games of chance.
Students in both the PIE classes and comparison classes

were given paper-and-pencil pre- and post-tests of the
probability concepts addressed by the unit.  Items on these tests
were derived from standardized tests (National Center for
Educational Statistics, 1994), suggestions from the NCTM
(1989), items from the research literature on probabilistic
reasoning (Tversky & Kahneman, 1982; Konold, 1991), and
specific items we designed to assess the probability intuitions
relevant to the instructional objectives of the probability
courses.  The post-test given to students in both the
experimental and comparison groups consisted of a set of
questions that were similar to those found on the pre-test
(although the post-test questions were harder), as well as a set
of questions that were new to the post-test.  The score for each
student was based on their performance on the multiple choice
questions (1 point each) combined with their performance on
the short-answer questions (1 point each). The short answers
were scored correct if the student justified their answer with an
appropriate mathematical construct.  We used a blind scoring
process so that while scoring the test the researcher did not
know to which group the student belonged.

In addition, the teacher wanted to make sure that the test
was “fair” to all his students (i.e. not biased toward the students
in the PIE curriculum).  As a result, although some questions
did involve coin flipping, fairness, etc., the questions were not
simple restatements of the PIE activities. That is, all questions
on the pre- and post-tests involved some sort of transfer from
the PIE curriculum.

Quantitative Results
  A three-way analyses of variance (ANOVA) was carried

out on three between-subject factors on the post-test: condition
(experimental and comparison), gender (male and female), and
standardized test score (split on the median for this sample).
This analysis revealed a significant main effect of condition (F
= 9.7, p < .01), a significant main effect of standardized test
level (F = 45.7, p < .01; see Figure 7a), no main effect of
gender (F = 1.3, p = .25; see Figure 7b), and no interactions
were found.  Additionally, t-tests found no significant
differences between the two groups on the pre-test (t (89) =
.21, p > .5), but a significant difference on the post-test
(t(97)=3.4, p <.001; see Figure 8).
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Figure 7a: Standardized tests and condition
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Figure 8: Post-test scores

These findings provide evidence of the effectiveness of the
PIE curriculum: the PIE curriculum was similarly beneficial for
students regardless of gender or scholastic achievement as

measured by standardized tests, and the students in the PIE
curriculum significantly outperformed the students in the
comparison condition.  Given these general findings, how did
the PIE students compare to the comparison students on
questions related to the focus of the PIE curriculum, the
outcome space and the law of large numbers?  To answer these
questions, let us look at some of the specific post-test
questions.

Test Item: Three Penny Flips
The first question that we will analyze is called the Three

Penny Flips question, found in Figure 9.  In this question
students are asked to enumerate all the outcomes of three coin
flips, calculate the chance of getting all heads, and state if any
combinations of coins are more likely.  Because these
questions lay at the heart of the PIE curriculum, we would
expect the students in the PIE condition to significantly
outperform students in the comparison condition.  This is the
case in the first two parts of this question (for the enumeration
section, X2(1) = 11.1, p < .01; for the calculation section, X2(1)
= 6.2, p < .02).  But, perhaps surprisingly, there was not a
significant difference between groups in simply stating if any
outcome was more likely (X2(1) = 1.3, p = .26).  However,
there was a significant difference in the number of
explanations coded as correct (X2(1) = 6.6, p = .01).  An
explanation of this result requires another level of analysis,
what we call “facet analysis”.  We take the term “facet” from
Hunt and Minstrell (1994), who state that a facet is a mental
resource or knowledge element employed to explain a
particular phenomenon.  Each student explanation was coded
for the main facet used as justification.  Figure 10 shows a
subset of the most common facets used on this question, and
Table 2 describes the facets.
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Three pennies are flipped one at a time.  What are all the
possible combinations (in terms of heads and tails) for the
coins to land?

Draw a diagram, picture or chart that shows all the possibilities
for the three coin flips.

What is the chance of getting three heads?

         1/8                                                                                               
                              

Are any of the combinations more likely than others? Why or
why not?

         No, all eight outcomes are equally likely                                 
                
Figure 9: The Three Penny Flips Question (examples of

acceptable answers in Italics)

This analysis of facets shows that there were important
differences between the way the PIE students and the
comparison students justified there answer to the question “Are
any of the combinations more likely than others?”  For
instance, we see that the PIE students were more likely to state
that all outcomes were equally likely  (equally probable
outcomes) and were also more likely to explicitly reference the
number of outcomes when stating that the outcomes were
equally likely (equiprobable-quant). Compare this to the
students in the comparison condition, who were more likely to
state that “anything can happen”.  This was not scored as a
correct answer, even though it may seem similar to “equally
probable outcomes.”  However, we have found, and it has been
documented elsewhere (Konold et al., 1993), that students
often use the simplistic reasoning of “anything can happen” to

state that predictions simply cannot be made about random
phenomena, because “anything can happen” (for example: Q:
what is more likely, any combination of two heads and one tail,
or three heads? A: You can’t tell, because coin flipping is
random, and anything can happen).  Finally, we see that
students in the comparison condition were also more likely to
state that “runs” were less likely, which is another well-
documented non-normative idea often employed by students.

0 2 4 6 8 1 0

equiprobable
outcomes

equiprobable-
quant

random = fair

no runs

anything

Cont Count

Exp Count

Figure 10: A subset of facets employed on the Three Penny Flips
Question
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This analysis shows that students in the PIE condition had
more success in enumerating the outcome space, using the
outcome space in a calculation, and then justifying why all
possible outcomes of three coin flips were equiprobable.  Let
us now look at a question designed to probe students
understanding of the law of large numbers.

Test Item: Fair or unfair coin
In this question students are asked to judge the fairness of a

coin that is flipped 100 times, and comes up heads 47 times,
and tails 53 times (see Figure 11).  Because a t-test shows that
we cannot reject the null hypothesis (a one-sample t-test, with
heads = -1, tails = 1 gives us t (99) = .6, p = .55), we scored
both that the coin is fair, and that one cannot tell if the coin is
fair, as correct.  Because a substantial focus of the PIE
curriculum was determining the fairness of different situations,
and because this is a direct application of the law of large
numbers (in which students should note that a small difference
after 100 flips should be expected), we expect that the students
in the PIE curriculum would substantially outperform students
in the comparison condition.  However, as in the previous
analysis, this was not the case for the forced-choice part of this
question (X2(1) = .02, p = .89).  A closer look at the data shows
a ceiling affect for this question, with over ninety percent of
students answering this question correctly.  And, this ceiling
affect may be explained by looking at the facets employed by
students on this question. Figure 12 shows a subset of the most
common facets employed on the fair or unfair coin question.

Suppose you flipped a coin 100 times and got 47 heads and
53 tails.  Would you say:

(a) the coin is unfair in favor of Heads

(b) the coin is unfair in favor of Tails

(c) the coin is fair

(d) I cannot tell if the coin is fair or unfair

Why or why not?          When flipping a coin 100 times, such a
small difference is to be expected.
Figure 11: The Fair or Unfair Coin Question (examples of

acceptable answers in italics)

An analysis of the explanations shows that the PIE students
significantly outperformed the comparison students in
providing normative explanations (X2(1) = 6.2, p < .02).
Figure 12 shows that, although the modal answer for both
groups was that the coins were “close enough” to even (“you
can’t expect the coin to come out exactly 50:50.  53:47 is close
enough”), a substantial amount of students in the comparison
condition stated that “random = fair” (“cause when flipping a
coin it is all luck”), an answer that was not coded as correct.
So, as with the three penny flips question, students in the
comparison condition were more likely to rely upon simplistic
notions of randomness in their explanation, whereas students in
the PIE condition were able to employ more normative facets
of probability in their explanations.
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Facet Explanation Example

equiprobable
outcomes

state that all outcomes are equiprobable,
without further justification

“yes the game is fair because each chance is equal”

equiprobable quant state that all outcomes are equiprobable, and
there are n outcomes

“All 8 combinations are equally likely”

Random = Fair any random process must be fair “it is fair because it is all chance”

No runs outcomes such as HHH or TTT shouldn’t
happen much

“because 3 heads in a row is highly unlikely”

anything (can
happen)

in a probabilistic situation, one can expect
anything to happen

“they are all the same cause anything can happen”

Table 2: Description of facets employed on the Three Penny Flips Question

Facet Explanation Example

close enough an evaluation of data in which quantities are
taken to be close enough to be considered
equal

“it’s almost equal in the amounts, so it doesn’t matter if
one side has a few more.”

Random = Fair any random process must be fair “it is fair because it is all chance”

LOLN (law of large
numbers)

an explicit evaluation in which data based
upon a large sample is more compelling than
data based on a small sample.

“Again, the law of large numbers will even things out, but
such a small sample size is hardly reliable”

can’t tell one can’t say anything about the results of a
random phenomena

“You can’t tell what’s going to happen”

anything (can
happen)

in a probabilistic situation, one can expect
anything to happen

“they are all the same cause anything can happen”

Table 3: Description of facets employed on the Fair or Unfair Coin Question
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Figure 12: A subset of facets employed on the Fair or Unfair Coin Question

At this point we have seen that students in the PIE
condition outperformed students in the comparison curriculum
on questions relating to the outcome space and the role of data.
However, we will now see that students in the PIE curriculum
did not perform well on all aspects of our model of probability.

The Quiz Question and the Basketball Question
Two other questions were designed to probe students’

understanding of the outcome space: the Quiz Question and the
Basketball Question (Figure 13).  However, students did not
recognize the questions as being related to the outcome space.

Instead, these questions show the importance of having
students recognize that one can apply understandings of
randomness to real world phenomena that are not based on
prototypically probabilistic phenomena.

The Basketball question asks students about the chances of
a free shooter making her shots, and the Quiz question asks the
probability of guessing three True/False questions correctly.
From the perspective of probability theory, both of these
questions should be answered by invoking an outcome space
isomorphic to coin flipping (where, say, heads = guessing
correctly or making the shot).  Given this, we expect that the
students in the PIE condition would outperform students in the
comparison condition.  And, although we can claim that
students in the PIE condition performed marginally better than
the comparison students on these questions (Basketball: X2(1)
= 3.7, p = .054; Quiz: X2(1) = 6.3, p < .02), this would be
missing the point.  In fact, only three students (all in the PIE
group) answered the Basketball question normatively, and only
five students (again, all in the PIE group), answered the Quiz
question normatively.

When answering the Basketball question, most of the
students simply relied on causal reasoning (“well it depends if
the player knows how to play and shoot well. Maybe she
makes one or both, you never know.  She has a fifty-fifty
chance”) or their notions of “50%” (“still 50% because each
time it is always a 50-50 chance”).  When answering the quiz
question students again relied on notions of 50%, often
attempting to incorporate the number three (the only number in
the question) into their answers (“it is a 50/50 chance that you
would get 1 right so three right would be 1/3 of a chance”), or
they relied on their understanding of test-taking (“think very
hard and read it over”).
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A quiz you are taking has three “true or false” questions.  You
know none of the answers and guess at all three.

a.  What is the probability of guessing three correct
answers?

  1/8                                                                                             
                

Time has run out in the big basketball game, and the score is a
tie.  However, one of the schools players was fouled and
gets to shoot two free-throws (each worth 1 point).  If
either one of the shots (or both) is made the school wins.
The player has an average free-throw percentage of 50%.
What is the chance that she will make at least one free-
throw and win the game?

  3/4                                     
 Figure 13: The Quiz Question and the Basketball Question

Looking back to the PIE curriculum and our model of
probabilistic reasoning, we see that perhaps this should have
been expected.  Because the PIE curriculum ignored issues of
recognizing randomness, one of the four components of
probabilistic reasoning (the curriculum used only
prototypically random devices such as coin flipping and dice
tossing), it seems as though the students did not learn to
recognize random phenomena in “real world” situations.  That
is, the students did not even recognize the outcome space as
being relevant in answering these questions, and the students
relied more on their understanding of test-taking and basketball
shooting.  If we consider performance on such questions
important, we must ensure that students have the opportunity to
engage in activities where they can see the invariance of the
outcome space across different situations, and we may also
have to help students see the invariance of randomness and
probabilistic reasoning across different situations.

Qualitative Results: A Case Study of J and P
In this section we take a detailed look at how one pair of

students, J&P, articulated and revised their initial
understandings of probability as they interacted with
PIE—collaboratively making predictions, evaluating data, and
interpreting representations. This qualitative analysis will give
a feel for student interactions, and show how the features of
PIE contributed to student conversations and student
understandings.

We join J & P as they interact with Try of the Three Coin
Game1. As discussed earlier, the game is unfair, as Team A
scores on five of eight outcomes. In Try, PIE allows students to
choose the outcomes of the coin flips. In this case, J is
intentionally choosing the coins so that Team B scores all the
points.  In Excerpt 1 we see P asking J’s rationale for this, and
J simply states that “I want to be the man”.  We claim that J
was using this feature of PIE to predict that B would win more
games, and justification for this will be forthcoming.

[J is making Team B score all of the points]

P: Why you got to do B?

J: Cause I want to be the man.
Excerpt 1: J has Team B score most of the points

Jumping the first prediction question, it appears that J and P
agree that the game is unfair.  Excerpt 2 shows J explicitly
stating that the game is unfair, P stating that Team A will win
more often, and both students jointly constructing the statement
that Team A has more opportunity (their response is recreated
                                                  

1The transcription conventions used are derived from Gumperz (1982).
Brackets ([ ]) are used to identify comments by the researcher, equal signs
(=) are used to identify where student speech overlaps, and ellipses (...) are
used to identify a pause.
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in Figure 3a).  This is entirely consistent with the normative
view that Team A has more outcomes (or, as P and J say,
“slots”, or “opportunity”), but we will see that J and P have
conflicting interpretations of these statements.

J: We think the game is unfair.

P: We think that team A will win more often.

J: It, I mean they =

P:           =have more.

J: Have ... more =

P:           =Slots.

J: Opportunity.

typed: We think the team A will win more often because they
have more opportunity.

Excerpt 2: Team A has more opportunity

In the third prediction question the students are asked to
predict how often each team will score by dragging bars to the
appropriate heights (their response is recreated in Figure 3b).
In Excerpt 3 we see J state that Team B will score more points.
We consider the student response to this question to be a
pivotal point in this activity, as this is the first time in this
activity that the two students explicitly recognize their different
expectations.

J: [Singing.  Moves B’s bar higher than A’s bar]

P: Why you put B?

J: I think B is gonna win.  And you see all the other times I
win. Like with the bunny had more opportunity  = 

P:        = The horse, yeah, I know that.  But you
shoulda put, on the first one, you said you think A will win
because they have more opportunity

J: No I didn’t say A would win. I think the game is unfair in
A's favor, because they have more opportunity  =

P:         =correct, correct, correct.

J: Because we...have, how do you spell experience?
[J typing]

P: E-e-x-p-e-r-e-r-i-m-e-n-t. Experiment.

J: Because we have experimented.

P: Is that how you spell it?  [to T, who is walking by]

T: Perfect.  So B's winning?

P: Yeah, on the Try thing.  Well, J was making B win, but

J: Don’t even worry about that.  What you wanna do here,
you gonna agree?

P: I’m gonna disagree [moves agreement bar to
disagree]

Typed: We think Team B will score more points because we
have experimented with it all ready.

Excerpt 3: J states that B is going to score more

This is a complex interaction, and will require some
explanation.  In this excerpt we notice some misunderstandings
that were hidden in previous exchanges.  For instance, J
believes that the term “in favor of” has the opposite meaning
than we intended (and, we have found that a small but
substantial number of students have difficulty with this
wording).  We also see that J is making (what is to us) an
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unjustified analogy to the Horse and Bunny game when he says
“And you see all the other times I win. Like with the bunny”.
What J is stating here is that the “scoring zones” from the
Horse and Bunny Game are analogous to the outcomes in the
Three Coin Game, and that even though the bunny had more
zones, the horse won in the end.  However, this analogy breaks
down for two reasons: in the Horse and Bunny Game each
scoring zone represents a large number of outcomes, not a
single outcome; and each scoring zone is not equally probable,
whereas each outcome in the Three Coin Game is equally
probable. We also see that J states that they have “experience”
with the situation (which P changes to “experiment”). This
provides evidence that his seemingly flippant “I wanna be the
man” comment (Excerpt 1) meant that J was constructing data
in Try in an attempt to predict the final outcome of the game,
and this prediction is based on his prior experiences with the
Horse and Bunny Game.

Note that P immediately recognizes and points out J’s
apparent inconsistencies.  Once J explains his reasoning, P
seems to agree with J for much of this exchange, even helping
to construct their typed response.  However, when the teacher
intervenes to ask them about their answer, P states that he does
not believe their jointly constructed prediction (“Well, R was
making B win, but”). He then explicitly states that he disagrees
with their response (“I’m gonna disagree”).  At this point the
stage is set for the students to run the simulation and
(potentially) rectify their disagreements, which is important in
that it motivates students to compare their expectations to the
results of the simulation, and then defend, justify, and modify
their understandings based on their interactions.

Before continuing with this, though, let us belabor one
important detail of these interactions that relates to the
rationale behind the design of PIE: we see that many would

consider prediction question 1 (is this game fair or unfair) and
prediction question 3 (how often will each team score) closely
related. However, note that question 1 was fully discussed by
the two students, yet there remained a critical (and hidden)
difference between their expectations.  It was only in question
3, where the students interacted with a standard representation
(a bar chart) in a non-standard way (that is, not by using it as a
historical record of events, but by using it as a prediction tool)
that these differences became visible to both participants.  Let
us now turn to J and P as they run the simulation.

J and P have run several simulated games, and have seen
Team A win every time.  We join them as A wins yet another
game to 200, “Karen” (the computer agent, denoted as “K” in
the transcript) announces the winner, and then asks them an
observation question (Excerpt 4).
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K: At 200 turns, team A is ahead. [computer plays Team
A’s animation]

P: A be whooping!

K: do you think the game is fair or unfair now?

J: Up yours, team A.

P: what do you think about this game now?  [paraphrasing
the observation question]

J: This game is bullshit... Well my prediction was right, this
is game is unfair.

[starts new game]

K: At 20 turns team A is ahead.

P: Well my prediction is right that, see mine was somewhere
close to that prediction.  But yours is like, umm, totally off
because team A is way up there and team B is right there.

J: You didn't say, you didn't say that team A was gonna win,
you said yeah that's right =

P: = I did, I did say team A =

J: =but didn't you agree with me? =

P: = I said team A

J: P, did you or did you not agree with me?

P: I said team A.  I said team A. [repeating this in a
taunting manner]

J: Shut your ass.
Excerpt 4: P and J realize that Team A is winning

In this (somewhat heated) exchange, we see that both J and
P now agree on the results: Team A wins more of the games.
We also see J (possibly prompted by the observation question),
attempt to salvage some of his prediction, by stating “Well my
prediction was right, this is game is unfair.” P, however, states
that J’s prediction was inaccurate, which leads to an argument
about exactly what transpired in Predict.  It is not until the

teacher comes over (Excerpt 5) that the students discuss the
precise differences in their expectations, and give backing
arguments, such as P repeating his concern with J’s making
Team B win in Try.  Next, when P states that he thought A
would win because “they had more opportunity”, we see J try
to change the meaning of his prediction, stating “that’s what I
said.”

P: He put team B was going to be winning.   [to teacher, who
walked over to them]

T: Did you agree or disagree? 

P: I disagree.

T: Why do you think, why do you think, oh cause B when
you experimented, B was winning?

P: Yeah, but he was making them win.  That was.

T: Look at this, why do you think team A is winning?

P: Cause they had more opportunity.

J: That's what I said.

P: They got more slots.

T: Why didn't you go that way when you predicted?

P: He said remember the bunny and the horse = 

J: = The horse didn't have all the
opportunities, and the horse still won.

T: Right, right, this is different. When you get to conclude,
talk about what you know now.

P: Yeah, yeah we will. [clicks conclude]
Excerpt 5: Explaining reasoning to the Teacher

These excerpts provide an example of the way that an
instructional environment must account for students’ desire to
link their existing understandings with current situations.   To
make sense of the current situation J draws on an analogy to a
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prior game, and defends his initial prediction with statements
such as “Well my prediction was right, this is game is unfair”,
and, when P says “Cause they had more opportunity”, J rejoins
with “That’s what I said”: although J has already determined
that his prediction did not accurately describe the outcome of
this situation, he is still drawing upon some aspects of his
predictions in his attempt to make sense of the situation.
Simply expecting students to state that they are “wrong”, and
then accept what is presented as “right” cannot work.  Instead,
students should be presented with situations where they can
discover what understandings are in agreement with normative
theory and what are in conflict with normative theory, and
build from areas of agreement.

Let us belabor one more detail of PIE.  This entire
exchange was prompted by an observation question which, by
stopping the flow of the activity, provided an impetus for a
conversation that allowed the two students to contrast the prior,
typed predictions to the results of the simulation, and allowed P
to state his disagreement with the original predictions.  This
question proved valuable even though the students never typed
a response to the question.

Moving on from this point in the activity, we have evidence
that J moved from his initial beliefs, to understanding that the
outcome space is an important determinant in deciding if a
game is fair, one of the instructional objectives of this activity.
This evidence comes later in their investigation, during
Principles, when the students were asked to explain how to
make a fair game. J stated “Both teams have an even amount of
chances.”  However, this is an admittedly limited result, as J
never does reexamine his analogy to the Horse and Bunny
Game to understand why it breaks down.  Let us examine this
issue a little more closely.

It is important to acknowledge that, when building an

environment for knowledge construction, it is impossible to
determine all possibilities and contingencies beforehand.  That
is, any computer activity will not be able to take into account
all possible student reactions.  In fact, this is exactly why the
PIE computer activities were designed as one part of a
curriculum with a number of mutually reinforcing activities
including computer-based and real-world activities, as well as
full-class discussions.

However, as we were not prepared for J’s analogy, we
missed a potentially valuable learning activity: an explicit
comparison of the Horse and Bunny Game and the Three Coin
Game.  In retrospect, it seems as though this comparison would
not only be potentially valuable to J, but to other students, as
such a comparison would foreground the exact definition of the
outcome space, and in future implementations of PIE we will
consider this as a potential new activity. This finding points to
the importance of looking closely at student interactions, and
iteratively improving environments for knowledge construction
based on the repertoire of intuitions and reasoning strategies
the students employ throughout the curriculum.

Conclusions
We feel that this study has relevance not only to the

creation of math and science learning environments for middle
school students, but for the creation of any environment built to
aid people in knowledge construction.  In the PIE curriculum
the students were not made to memorize terms and definitions
(trials, outcome space, etc.), but instead were provided with a
situation in which their intuitive ideas would lead to productive
conversations about the phenomena, and probability was used
not as an end in itself, but was used in the service of a task that
was considered authentic to the students.  It is only after
participating in these activities that the students formalize their
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ideas using definitions and formulas, and at that point the
students have a reason for doing so.

We also saw that students may employ non-standard uses
of terms or ideas, many of which can be anticipated and
used—such as student intuitions about “mixes happen more”.
Others, however, cannot always be anticipated, such as
misapplying an analogy to a prior situation.  In either case, we
saw that collaboration brought these issues to the forefront, as
collaboration required that these ideas be explained, justified,
and then, occasionally, challenged.  This use of collaboration,
combined with presenting different perspectives, helps to
ensure that student ideas are articulated and alternatives are
presented, which sensitizes the students to the learning
experience.

When asking students questions from slightly different
perspectives, and providing them with different resources, the
students were able to articulate a variety of (sometimes
conflicting) ideas, and consider alternate perspectives.  This is
important, because when discussing probability or any other
complex domain, people often answer similar questions with
dramatically different reasoning (Bell, 1997; diSessa, 1988;
Konold et al. 1993).  When designing environments built to aid
people in knowledge construction, designers must ensure that
people are presented with a variety of ways in which to
consider phenomena, and are provided a variety of ways in
which to express these ideas.

Finally, we saw that both the environment itself, as well as
human participants, can function in a manner that facilitates
student reflection on the activity.  This was illustrated through
the use of observation questions: the current activity was
paused and the computer agent, Karen, made an observation
about the game.  This observation prompted a student
conversation in which they compared their predictions to the

results of the game.  The case for a human participant was
made later in that same exchange, when a series of questions
by the teacher resulted in the students moving away from
simply discussing their predictions, to formulating ideas that
help to explain the current results.
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